1. **Paramutation at the R locus in maize plants trisomic for chromosome 10.**

A comparison was made of the aleurone phenotypes resulting from pollination of an rfrgs inbred strain (W23) with moderately inbred W22 sib plants of the following genotypes: R^{fr}/RS^{fr} (control), R^{fr}/Rst/RS^{fr} (disomic) and R^{fr}/Rst/Rst (trisomic). The object of the experiment was to test the hypothesis that paramutation of R^{fr} to a weakly pigmenting allele, R^{fr}'^l, which was known from previous tests to occur in 100% of the cases in R^{fr}/Rst plants, takes place at the zygote stage of meiosis, when the R^{fr} and Rst alleles are synapsed. The r^{fr} allele present in the R^{fr}/Rst and R^{fr}/Rst/Rst male parents had earlier been shown to be non-paramutagenic. Assuming 2 by 2 pairing at zygote at any given chromosome level (Newton and Darlington, 1929) only the R^{fr} male gametes that carry R^{fr} ex-conjugants from R^{fr}-Rst zygote pairing in R^{fr}/Rst/Rst trisomic plants should be paramutant, and the rest should be normal, if the hypothesis in question is valid. Not more than 50%, and perhaps as few as 33%, of the R^{fr} gametes formed by R^{fr}/Rst/Rst trisomic plants should be paramutant on this basis. The average scores for aleurone pigmentation of the R^{fr}/rfrgs kernels, on an arbitrary scale of 0-40, for the three classes of matings was found to be as follows:

\[
\begin{align*}
\text{rfrgs} \times \text{rfrgs} & : 39.23 \pm 0.16 \\
\text{"} \times \text{rfrgs} & : 5.07 \pm 0.23 \\
\text{"} \times \text{rfrst} & : 6.37 \pm 0.13
\end{align*}
\]

Aside from a few seeds that could have resulted from pollen contamination, the R^{fr}/rfrgs kernels resulting from the application to rfrgs individuals of pollen from the trisomic R^{fr}/Rst/Rst plants, as well as from the disomic R^{fr}/Rst individuals, were of the paramutant phenotype throughout. Thus the results do not support the hypothesis that R^{fr} is changed to the paramutant form, R^{fr}'^l, in R^{fr}-Rst plants, when the R^{fr} and Rst alleles are conjugated at zygote.

R. A. Brink

2. **"Enhancement" of R^{fr} action associated with two reciprocal translocations involving breaks in chromosome 10 proximal to the R locus.**

Evidence was obtained in 1957 indicating that the aleurone pigment-producing action of the standard R^{fr} allele was significantly increased (from dark mottling to near-self-color, in single dose) if R^{fr} was introduced into either the T2-10a or the Th-10b translocation. Both translocations involve breaks approximately 9 crossover units proximal to the R locus. Furthermore, it appeared from other tests that TH^{fr} (read translocated R^{fr}) was less paramutagenic in heterozygotes with the stippled allele (TH^{fr}/Rst) than was R^{fr} in ordinary R^{fr}-Rst plants. More comprehensive experiments with
this material were carried out in 1958, the results of which may be summarized as follows:

(a) T2-10a R^F and Th-10b R^F are, in fact, significantly stronger in aleurone pigment-producing action than standard R^F in a normal chromosome 10.

(b) On reincorporation into a normal chromosome 10 from a T chromosome, R^F retains its enhanced pigment-producing action. This observation excludes an explanation of the phenomenon in terms of position effect of the conventional kind.

(c) Enhancement of R^F action does not appear in the offspring of plants carrying a T chromosome bearing an r (colorless aleurone) allele, with standard R^F present in a normal chromosome 10 (Tr/R^F). Evidently, the original change to enhanced R^F action requires that R^F be in coupling, not in repulsion, with T, in the translocation heterozygote.

(d) Testcrosses on rr plants of TrF/TrF homozygotes yield the same enhanced R^F phenotype as results when pollen from Tr^F/r plants is used. Seemingly, "pairing stress" at meiosis is not a factor in the enhancement process.

(e) Partial reversion of the enhanced pigment-producing action of R^F in a Tr^F chromosome toward the level of standard R^F is found among the offspring of Tr^F/R^F plants.

(f) Paramutability of Tr^F in Tr^F/Rst heterozygotes (and also of R^F extracted from a Tr^F chromosome) is markedly lower than that of standard R^F in ordinary Rst^F individuals.

(g) The partial reversion of enhanced R^F toward standard R^F, observed among the offspring of Tr^F/R^F plants, is paralleled by an increase in paramutability when an R^F allele with this history is made heterozygous with stippled.

Margaret Blackwood*
R. A. Brink

* Permanent address: Melbourne University, Melbourne, Australia.

A few stippled aleurone kernels with a much reduced frequency of spotting were regularly observed in a series of matings of $R^F Rst$ and $Rst^F rSge$. When such kernels were planted, and the resulting individuals were selfed, ears were formed that showed an Rst^- (light) phenotype. The frequency of such germinal changes to Rst^- (light) was found to be $58.7/1000$ and $50.3/1000$ Rst gametes when tested in $Rst Rst$ and $Rst^F Rst^F$ heterozygotes, respectively. A population of $13,088$ Rst^-