7. Identification of plasmatypes.

Restored sterile inbreds that are maintained in S or T types of cytoplasm must be correctly identified and used only with the corresponding S or T sterile seed parents. Failure to do this has led to much confusion and unsatisfactory pollen restoration. Many of the sources of pollen restoration carry genes for both S and T restoration. When maintained in one type the restoring genes for the other type are unselected for and tend to be lost although the inbreds themselves may be fully fertile. Fertile inbreds cannot be tested for their plasmatype by crossing on to S or T steriles since they may be carrying restoring genes for both types. If they are segregating for sterile plants these sterile plants can be tested by being pollinated by suitable testers. If not segregating they can be crossed by non-restoring inbreds. The segregating sterile plants in later generations can then be tested.

Donald F. Jones

CORNELL UNIVERSITY
Ithaca, New York
Department of Plant Breeding

1. Mutational Behavior of RF Jana

Previous studies have shown that the action of the standard RF: allele (Cornell) is due to two closely linked genes which are separable by crossing over. The RF: Cornell allele mutates both to RF and Rb but only rarely to RF. Earlier, Stadler had observed the same type of mutational sequence in stocks possessing the following RF alleles: RF: Boone, Quapaw, Ponca, and Black. Stadler concluded that in the case of these 5 alleles the action of the R segment is due to separate genes rather than to the action of a single gene.

Later, Stadler found that this stepwise course of spontaneous mutation is not characteristic of all RF alleles. He reported that two RF alleles with dilute pigmentation mutate directly to RF and not to RF. In the case of these two alleles, he proposed that both plant and seed color are dependent upon a single component.

Recently a third type of RF allele has been analyzed which mutates regularly to RF and less frequently to RF. In contrast to RF: Catspaw and Winnebago, this allele, which is known as RF: Jana, is identified by strong plant color both in the seedling and the flowering stages.

The seed mutation data from the cross of RF:Jana K/G RF:Jana k x dRF g RF k/g RF k are summarized in Table 1. The stocks of homozygous RF:Jana were marked on either side of the R complex with g and k.

Out of a total population of 245,515 female gametes tested, 24 colorless seed mutants were analyzed and of these all but two were RF:; none of these cases exhibited defective pollen. Of the 22 RF mutants produced, 13 were g RF K, 7 were G RF K, and 2 were G RF K in constitution. The simplest explanation of the origin of these cases is that the plant and seed color determiners of RF: Jana mutated simultaneously to the double recessive or to RF. On this assumption the g RF K mutants would be attributed to mutations in the g RF K chromosome, and the G RF K mutants to mutations in the G RF K chromosome. The origin of the two G RF K cases in which a crossover occurred may be ascribed to mutations in the g RF K chromosome with a coincidental crossover between g and k for the number of crossovers expected by coincidence is about 3.