c. Nondisjunction of B3 at the 2nd microspore division.

In this particular cross (cf. Table 1), the percentage of nondisjunction of B3 in "3B B3" pollen was 93\%.

If all colorless, shrunken kernels (cl sh), which were obviously hypoploid endosperm with hyperploid embryo, had germinated, the percentage would be higher. It would seem that hypoploid gametes tended to fertilize eggs more frequently, the apparent percentage being 59\%. But if we take account of all cl sh kernels, including ones which could not be analyzed because they failed to germinate, the percentage would approach 50\%. This indicates random fertilization by both types of gametes, "3Bn" and "3B B3 p3n".

As discussed in section A, nondisjunction of B3 in "3 B3" type pollen is not a common event. This can be checked genetically by planting colorless and colored kernels from 3A 3A x 3A 3A B3A cross separately and scoring for the occurrence of colored and colorless plants respectively.

(2) Nondisjunction of B3 on the female side.

a. Nondisjunction of B3 at meiosis.

When 3A Sh 3B B3 A Sh p3 A Sh tester plants and the ears were analyzed, about 17.6\% of kernels were cl Sh. According to a rough calculation the expected frequency of cl Sh occurrence due to crossing-over within the T-A segment is about 11% at maximum. The excessive cl Sh kernels could be accounted for by meiotic nondisjunction of B3 followed by formation of a "3" type megaspore. There is no way to tell the difference between nondisjunction of B3 at AI and at AII except by cytological study. The actual ratio of expected megaspore types can be obtained by planting all kernels from the original cross and by classifying plants according to kernel phenotype, plant color, pollen abortion and degree of glume clumping.

b. Nondisjunction of B3 at embryo sac formation.

If nondisjunction of B3 takes place some time at embryo sac formation, the genotypes of polar nuclei and egg might be different. They can be determined by planting cl Sh and Cl Sh kernels separately and scoring for the occurrence of colored and colorless plants respectively.

Ikuko Mizukami

6. The effect of a-x deficiencies on crossing over in T β α sh/
N a-x plants.

Of the 109 alpha-bearing strands reported by Laughman (Mutation and Plant Breeding Symposium, 1961) among offspring of T-marked hemizygotes (T β α Sh / N a-x), none carried the marker (N) proximal to the a-x deficiency. As was reported, their complete absence is somewhat surprising since they might be expected, at least occasionally, as a result of a coincidental exchange in the T-β segment.
Two obvious hypotheses to explain the rarity of this coincidental exchange are that the event giving rise to the nonrecombinant alpha has an interfering effect, or that the deficiency or its effect may extend well to the left of the A locus. The deficiencies a^{-x}_1 and a^{-x}_2 are of X-ray origin and are known to include the A locus and also to extend to the right beyond the Sh locus.

Data collected in this laboratory this past summer seem to bear on the hypotheses regarding the lack of $N a$ Sh recombinants. Hemi-
zygotes of the constitution $T \beta \ a \ sh / N \ a^{-x}$ were crossed by a^{-} homo-
zygous colorless ($a \ Sh / a \ Sh$) pollen parent. From the F_1 ears,
colored ($\beta \ a \ sh / a \ Sh$) and colorless ($a \ Sh / N \ a^{-x}$) individuals
were planted and determinations made on each individual plant for the
presence or absence of aborted pollen. The presence of aborted
pollen is typically associated with plants that are heterozygous for
the translocation (T). In addition, individual suspect plants were
either self-pollinated or crossed by a known pollen parent tester
and at maturity the ears checked for the normal or aborted condition.

Preliminary results indicate the frequency of exchange in the
$T-\beta$ region is greatly reduced when the homologue is deficient. The
normal frequency of recombination between T and β in $T \beta \ a \ sh / N \ a \ Sh$
heterozygotes approximates 7.0 percent, whereas in the $T \beta \ a \ sh / N \ a^{-x}$
hemizygotes this frequency is reduced to 1.0 percent or less.

It appears from these data that the effect of the a^{-x} deficiencies
is a marked inhibition of exchange in the $T-\beta$ segment of the hemizygote. Moreover, since the above experiment does not involve the isolation
of the nonrecombinant alpha strand, the hypothesis of an interference
due to this event seems unlikely as an explanation for the absence
of $N a$ Sh recombinants.

Richard Runge