with no exchange of partners elsewhere in the association. Only when these are also taken as representing an exchange of partners located at the centromere, the percentage of multivalents expected will be close to the observed.

It is also observed that the number of times an exchange occurs in an arm is proportional to its length. In the case of chromosome 6, however, the absence of exchanges from the short arm is significant (P = 0.0024). This is probably due to the special features of this chromosome; the short arm is the shortest in the complement and it is anchored to the nucleolus by the subterminal nucleolus organizer, both of which features hamper the formation of an exchange.

Although the exchange points show a random distribution along the length of the chromosome, they show a tendency to cluster in certain regions of the chromosome, which indicates that the initial points of pairing are probably mostly associated with the centromere, knobs and the ends of the chromosomes or with regions adjacent to them.

On the basis of data with respect to chromosomes 3, 6, 9 and 10 the mean length of the "pairing block" (the region paired between two consecutive exchange points or point of exchange and the end of the chromosome in single exchange cases) increases with increase in the length of the chromosome while the mean number of pairing blocks increases with increase in length of the chromosome up to a certain limit beyond which it decreases. In the case of chromosome 6, however, the rise in the length of the "pairing block" is not so sharp as in other chromosomes probably due to the special features of this chromosome.

J. Venkateswarlu

2. Chiasma frequency in colchicine-induced auto-tetraploid maize.

Chiasma frequency was determined from analysis of metaphase I configurations in the pollen mother cells of tetraploid sectors in the tassels of two colchicine-treated maize plants. The average number of chiasmata per nucleus was 35.7 and of half-chiasmata per chromosome was 1.785. The chiasma frequency in pollen mother cells of diploid flowers in the same inflorescence was 16.06 per nucleus and 1.61 per bivalent (half-chiasmata per chromosome).

The mean chiasma frequency per tetraploid nucleus is more than twice as great as that per diploid nucleus. A comparison between them was made by calculating

\[t = \frac{X_t - 2X_d}{\sqrt{V_{X_t} + 4 V_{X_d}}} \]

where \(X_t \) and \(X_d \) are the means, \(V_{X_t} \) and \(V_{X_d} \) the variances of the means respectively of the tetraploid and the diploid. The \(t \) value obtained was 7.6 and this gives a probability of less than one in a thousand that they could be equal and that the difference is a chance one. The mean chiasma frequency per tetraploid nucleus is thus significantly greater than twice that in the comparable diploid.
The number of rod bivalents was smaller than ring bivalents in the pollen mother cells of the diploid flowers while in those of the tetraploid flowers, the ring bivalents were fewer than the rod bivalents. Further, the half-chiasma frequency per chromosome in the bivalents of the tetraploid (1.49) was less than that in the bivalents of the diploid (1.61) and the half-chiasma frequency increases with increase in the number of quadrivalents. Thus the substantial increase in the chiasma frequency in the tetraploid is accountable solely by those chromosomes which form the multivalents.

J. Venkateswarlu

ATOMIC ENERGY ESTABLISHMENT TROMBAY
Byculla, Bombay-8, India
Biology Group

1. A new inhibitor of aleurone and plant colour.

Under the title "Pigmented silkscar" (MNL 36:104), we reported that this stock, which was collected locally, inhibited the aleurone pigmentation completely when crossed as the female parent with homoyzgous colored aleurone stock. In the reciprocal cross, there is only a partial inhibition of pigmentation. Since it is very unlikely that we obtain the pigmented silkscar phenotype again, we wish to disassociate it from the aleurone inhibiting effect. We propose the symbol I_2 (Inhibitor_2) to denote the factor(s) responsible for this effect. In addition, the $I_2 I_2$ stock also seems to possess the capacity to inhibit plant color. The tests made so far are summarized below:

<table>
<thead>
<tr>
<th>Cross</th>
<th>Average pigmentation grade of kernels or plants</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A A C C R R X I_2 I_2$</td>
<td>2.81/5</td>
<td>Partial inhibition of aleurone color.</td>
</tr>
<tr>
<td>$I_2 I_2 X A A C C R R$</td>
<td>1.00/5</td>
<td>Complete inhibition of aleurone color.</td>
</tr>
<tr>
<td>$A A B B P_l P_l X I_2 I_2$</td>
<td>3.66/5</td>
<td>Partial inhibition of plant color.</td>
</tr>
<tr>
<td>$A A B B P_l P_l$</td>
<td>4.94/5</td>
<td>I_2 shows linkage with wx. Recombination 18.36%. (Data based on a single cob bearing 98 kernels.)</td>
</tr>
<tr>
<td>$(I_2 I_2 Wx Wx X T7-9 wx) X$</td>
<td>$T7-9 wx$</td>
<td>$A A C C R R$ wx wx</td>
</tr>
</tbody>
</table>