8. The tripsacoid nature of dwarf versions of WF9 and HY.

Mangelsdorf and Galinat (MNL 37) found that in certain instances a reduction in plant stature was associated with tripsacoid features of the ear. Normal and dwarf versions of WF9 and HY were compared with respect to the tripsacoid index.

<table>
<thead>
<tr>
<th></th>
<th>WF9</th>
<th>WF9 Dwarf</th>
<th>HY</th>
<th>HY Dwarf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>26.00</td>
<td>35.05</td>
<td>29.75</td>
<td>39.80</td>
</tr>
</tbody>
</table>

WF9 dwarf has been found to be a form of brachytic-2 (Lonnquist) and has its locus on chromosome 1 (Lambert). In isolating chromosomes with strong effects from teosinte or from tripsacoid races of maize of Mexico, Central and South America, Mangelsdorf found chromosome 1 to be frequently represented as the chromosome responsible for the tripsacoid effects.

G. S. Johnston

HARVARD UNIVERSITY
Cambridge, Massachusetts
Bussey Institution
and
UNIVERSITY OF MASSACHUSETTS
Waltham, Massachusetts
Waltham Field Station

1. *Tripsacum dactyloides* homeolog to corn chromosome 9 covers three short arm recessives.

The recessives \(sh_1\), \(bz\) and \(wx\) on the short arm of chromosome 9 have dominant counterparts on one chromosome in *Tripsacum*. The long arm will also be analyzed.

W. C. Galinat
P. C. Mangelsdorf