It is hypothesized that a deoxyribonucleotide which forms a complex with the DNA via a specific agent is responsible for the peculiar base composition. The synthesis of the atypical DNA from Black Mexican Sweet Corn appears to depend on the stage of kernel development and probably coincides with the time of pigment development. The abnormal base ratios reported previously are presumably not related to heterochromatin content.

N. van Schaik
Department of Genetics

M. J. Pitout
National Nutrition Research Institute
C.S.I.R.

Purdue University
Lafayette, Indiana
Department of Agronomy

1. A new striate mutant on chromosome 10.

A new mutant type was isolated which has longitudinal white stripes that parallel the leaf veination from early seedling stage onward. This mutant arose in M₃ segregating material from the combined chemical mutagen treatment of ethyl methanesulfonate followed by diethyl sulfate to the seed of a multiple marker stock used in mutation experiments. This character is recessive and very similar to Waseca stripe (sr₂) in chromosome 10 which was described by Joachim and Burnham (1955) MNL 27:66. Classification is good in the seedling and mature plant stage and pollen and ears are produced on most plants.

Intercrosses were made with homozygous recessive sr₂sr₂ stocks obtained from Dr. R. A. Brink. There were no striate individuals among 193 F₃ plants from eight crossed ears.

The mutant was crossed to a waxy marked chromosome-nine translocation series involving all chromosomes and F₂ waxy seeds were screened. All F₂ populations showed normal 3:1 segregation except those involving the wx 9-10b interchange (9S.13, 10S.40) in which the following data were collected in ten families. Waxy seeds gave 349 normal : 12 striate plants. These data indicate that the mutant is located close to the interchange point on the short arm of chromosome 10, whereas the Waseca stripe (sr₂) gene has been placed distal to R on the long arm of chromosome 10. The symbol, sr₂, has been assigned tentatively to this new mutant.

David V. Glover

2. A compact plant gene located on chromosome 1.

This mutant was given to this station by Allan Caspar of the Blandy Experimental Farms. The mutant produces seedlings which have very wide and