seedlings were observed in the M_1. In the selfed progeny, a colorless sugary seed, which could be due to simultaneous mutations at three different loci $A_1 Y_1 S_{u_1}$, and four normal colorless seeds, which could be due to simultaneous mutations at two loci A_1 and Y_1, were observed. These observations suggest that hydrazine may induce recessive mutations at specific loci even in the M_1.

V. S. G. Chandra Sekhar
G. M. Reddy

6. **Position of the purple gene (Pr/pr) in gene action sequences of anthocyanin biosynthesis.**

The U.V. absorption spectra of the alcoholic extracts of aleurone tissue of a_1, a_2, c_1, c_2, r testers and homozygous double recessive mutants of $a_1 Pr$, $a_2 Pr$, $c_1 Pr$, $c_2 Pr$, and $in Pr$ were compared.

All the single and double mutant extracts gave the same absorption maxima, i.e. 320mu, 286mu, and 275mu, with the exception of $a_1 Pr$ and $a_2 Pr$, which gave 308mu and 310mu respectively in addition to 286mu and 275mu. The spectral pattern of tissue extracts of pr differs from Pr extracts only in the $a_1 Pr$ and $a_2 Pr$ combinations whereas in combination with c_1, c_2, in, and r the pattern is the same. This might suggest that the Pr/pr locus actively controls the nature of the accumulated substance(s) only in a_1 and a_2, if the spectral pattern and absorption maxima are controlled by the Pr/pr locus in the aleurone tissue. Thus, Pr/pr may act prior to A_1 and after R in the gene action sequence (MNL 36:62, 1962).

It is possible that the Pr/pr locus, which controls the hydroxylation of the B-ring, may not necessarily shift the observed absorption maxima and/or spectral pattern.

G. Hari Kishen
K. Vaidyanath
G. M. Reddy

7. **Opaque-2 synthetic variety of maize.**

Several Indian inbred lines were selected to incorporate the opaque-2 gene to develop hybrids (MNL 42:148, 1968). The yellow opaque-2