of the corn-grass phenotype by dosage effect. Therefore, C8 is apparently
distal to the translocation, as would be expected from its map position.

J. B. Beckett

2. Location of TB-5a with respect to marker loci.

A B-type translocation involving the long arm of chromosome 5 has
apparently been separated from the X-ray induced translocation complex,
involving chromosomes 5, 6, and a supernumerary, reported in MNL 42:132.
Pollen sterility has dropped from the original 60-75% to about 30%. It
now seems appropriate to name this translocation, so it is designated
TB-5a.

The breakpoint of TB-5a lies between v3 and bv1, the former being
proximal and the latter distal.

Incidental information regarding td (thick-tassel dwarf) and na2
may be of interest here. Both are proximal to TB-5a and both appear to
be closely linked to the translocation. Since bv1, td, and na2 plants
are all somewhat dwarfed, the stocks were intercrossed to test for
allelism; $Na_2/na_2 \times bv_1$ and $Td/td \times na_2$ gave wholly normal progenies.
The additional observation that na_2 and td are proximal to TB-5a and
that bv_1 is distal makes it evident that the three represent distinct
loci.

J. B. Beckett

3. Patterns of nucleolar distribution at the quartet stage of meiosis in
tetraploids.

There are two nucleolar organizers located on the short arm of
chromosome 6 in each microspore of a quartet formed from meiosis in a
tetraploid. They each may form a small nucleolus or they may combine to
form one large nucleolus. The greater the proximity of the nucleolar
organizers, the greater is the probability that they will function to-
gether to form only one nucleolus. Consequently, the presence of only
one nucleolus indicates that the short arms of chromosome 6 are close
together.

There are six major types of patterns possible in a quartet.
They are shown in Table 1. The plane of first division is very difficult